
Team W.A.T.E.R
Max Wason
John Sadie
Peter Haschke
Jason Le

Mentor: Dr. Mohamed M. Elwakil
Sponsor: Choice - James Harms

1

“
Website
Automated
Testing
 for
Enterprise
Reliability

2

Problem Statement

Websites

Omnipresent nowadays due to their
usefulness.

Choice Hotels’ Websites

Another large company, with huge
profit margins.

They need to easily manage and run
many websites smoothly.

Their Problem

The testing process isn’t all
automated.

Getting information from a website
into a testing suite is time
consuming and therefore expensive.

Hotel Websites

Offer a valuable service.
Example: Priceline - $9.22 billion in
revenue in 2015.

They must be reliable to turn these
kinds of profits.

3

Current Testing Workflow

Navigate to a web page

Inspect elements

Transpose information

Automatically run test suite
4

Element Acquisition

← Manually inspect elements on a
webpage to obtain data

◎ Time intensive (and therefore
expensive), tedious, and repetitive.
○ Exactly the strengths of

computers

← Manually plug in that information
to the testing suite

◎ Same issues as above, plus
human error.

There’s got to be a better way!

Transposition

Inspection

5

Introducing

Chrome Testing Plugin

6

Solution Overview

Our proposed solution is to automatically
extract web page elements and package them
for various testing suites

7

Example Input

8

Example Output

9

Solution Details

◎ Key Features:
○ Pulls the UI Elements from a specific web-page
○ Filters through for specific UI Elements
○ Outputs into multiple file types

■ Some output file types can be used in testing
suites

Overall, by using this extension the time it takes to test a
Web-page would significantly drop.

10

Requirements and
Specifications

11

Requirements and Acquisition
revisited

Key Requirements:

◎ The tool needs be able to be used on any webpage.

◎ The tool needs to be able to get the attributes of ALL UI elements on

a page.

◎ The tool needs to output formatted files to be used in various testing

suites.

◎ The tool should be fast, effective, and easy to use.

12

Architecture
Overview

13

Structured
Solution
Why A Chrome Extension?
◎ Browser Extension vs.

Desktop application.
◎ Chrome Extension vs. Firefox

Plugin

The Chrome Extension Structure.
◎ Javascript
◎ Three modules of execution:

○ Frontend (Interactive
User Interface or UI)

○ Middleware (The “heavy
lifting”)

○ Backend (Make and
deliver outputs)

Data Message

Data Message

Frontend

Middleware

Backend

USER

OUTPUT 14

Implementation
Overview

15

Frontend
Functionality
◎ Provide GUI functionality.

(Error Checking)
◎ Retrieve and package data

from the GUI.
◎ Send GUI data to the

Middleware.

Plugin GUI Sample

Data Message

Data Message

Frontend

Middleware

Backend

USER

OUTPUT 16

Middleware
Functionality
◎ Retrieve user GUI

checkbox data from
frontend module.

◎ Pull all elements from the
current page.

◎ Filter out all UI elements.
(Buttons, Links, Inputs, etc.)

◎ Get attributes from each
UI element (id, name,
XPath, formulate
descriptive name).

◎ Package element data and
send to the backend.

Data Message

Data Message

Frontend

Middleware

Backend

USER

OUTPUT 17

Backend
Functionality
◎ Retrieve element data and

GUI checkbox data
(passed through the
middleware).

◎ Depending on output file
selection, from UI data,
create the files.

◎ Download the files using
Chrome API class.

File Output Downloads

Data Message

Data Message

Frontend

Middleware

Backend

USER

OUTPUT
18

Prototype Review
(Demo)

19

Challenges
and

Resolutions

20

Challenges and Resolutions

Challenge 1:
Completed

Adapting from
executable jar, into
browser plugin

Resolution 1:

We are fully integrated into the Chrome plugin.
We refined it into what we have just shown
you.

Challenge 2:
In Progress

Accommodating
Jasmine -

Getting JavaScript
object output

Resolution 2:

We are currently communicating with one of
the engineers at Choice to acquire more
knowledge on how this output file should look.

21

Challenge 3:
Completed

Getting XPath of each
element

Resolution 3:

We have successfully acquired the XPath
of every element, using a component from
an open source project.

Challenge 4:
In Progress

Supporting dynamic
frameworks: JavaScript,
Angular

Resolution 4:

Parsing unique elements within those
frameworks. Such as: ng-click & onclick.
We are successfully creating a separate
method that grabs the particular data.

Challenges and Resolutions

22

Schedule

23

Rally

24

2017 Spring Schedule

25

Usability Testing

Now

25

Usability Testing

26

Testing Procedure

Scope

This begins with the W.A.T.E.R
team explaining a small
background of our product to the
participants

Schedule & Location

The test will be done at one of the
homes of a W.A.T.E.R member.

Metrics:
Focused mainly on understanding,
overall ease of use and satisfaction.

This will also be monitored before,
during, and after the test.

Purpose:

We will identify concerns, goals,
and questions for our test.

Their will be an underlying theme
of questions we will take into
account during the test.

We will proceed with these following elements as our test procedure:.

27

Analysis

Quantitative Data Qualitative Data

Record Data Such As: Record Data Such As:

● Success rates

● Task time

● Error Rates

● Satisfaction ratings

● Observations about the
navigations participants took

● Problems experienced

● Comments/recommendations

● Answers to questions

28

Conclusion

29

“
Our project is an ambitious one.

The solution must be clean and elegant.

30

“
Our solution, once implemented, will save our

client tremendous resources.

31

ANY
QUESTIONS?

Thank you!

From all of us at Team W.A.T.E.R

32

33

https://docs.google.com/file/d/0B1mkaWdUj113V0hoZVEzNkJpbk0/preview

